显微镜平台,太阳光模拟器,衍射光学元件,光束整形,分束镜,光谱仪,生物激光器,光束分析仪,Layertec
激光行业资讯
激光行业资讯
激光行业资讯 首页 > 技术咨询 > 激光行业资讯

基于SPINDLE2显微镜三维相机的论文文献

作者:维尔克斯  时间:2021-11-16 9:25:30

SPINDLE2显微镜三维相机在观察物体时能产生正立的三维空间影像,具有立体感强、成像清晰、远程操作和实时定位的特点,是科研、医药、细胞观察等领域的研究利器。近几年有关SPINDLE2应用在显微镜三维相机参考文献有很多,也很有代表性和前沿性,表明了SPINDLE2是立体相机和显微镜三维相机论文科研的强大辅助性研究工具。

显微镜三维立体相机是由Double Helix Optics公司生产和供应的,其采取创新立体相机系统,结合了高品质光学立体显微镜的所有优点,形成具有独特的3D高清数字图像捕捉、自动对焦校准功能和可视化功能的研究型工具。显微镜三维相机可兼容多种显微镜,物镜和相机,可研究整个细胞的生物过程,所以也被称为三维细胞分析相机和定位显微镜。

下面是近几年有关三维细胞分析相机的应用相关的论文文献,方便大家及时查阅和跟踪最新的研究动态:

1、Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange ChromatographyAnastasiia Misiura, et. al., “Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange Chromatography,” Analytical Chem., 2021(单分子动力学反应与离子交换色谱相关的IgG构象变化)

2、Controlling microgel deformation via deposition method and surface functionalization of solid supports.Laura Hoppe Alvarez, et. al., “Controlling microgel deformation via deposition method and surface functionalization of solid supports,”Phys. Chem. Chem. Phys., 2021,23, 4927-4934(通过沉积法和固体载体表面功能化控制微凝胶变形)

3、Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function. Xilin Yang, et. al., “Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function,” ACS Photonics, 8, 7, 2174–2182, June 2021(使用工程点扩散函数对图像进行重新聚焦)

4、Exploring cell surface-nanopillar interactions with 3D super-resolution microscopy. Anish R. Roy, et. al., “Exploring cell surface-nanopillar interactions with 3D super-resolution microscopy,” BioRxiv, June 2021(利用3D超分辨率显微镜探索细胞表面-纳米柱的相互作用)

5、Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. W. Haichao, et. al. “Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix,” PNAS, vol. 118, no. 7, July 2021(探究纳米游泳器在多孔基质中的传输增强机制)

6、DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. E. Nehme et al., “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nat. Methods, vol. 17, no. July, 2020(通过深度学习进行密集3D定位显微镜和PSF设计)

7、Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule superresolution microscopy. H. W. Bennett et al., “Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule super-resolution microscopy,” Mol. Biol. Cell, vol. 31, p. mbc.E19-09-0499, 2020.(通过3D单分子超分辨率显微镜显示初生纤毛逆序室中新颖的纤维结构)

8、Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. K. Lasker et al., “Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus,” Nat. Microbiol., vol. 5, no. March, 2020.(无膜细胞器中信号蛋白的选择性隔离加强了新月柄杆菌中不对称性的空间调节)

9、Electrostatic Barriers to Nanoparticle Accessibility of a Porous Matrix. H. Wu, R. Sarfati, D. Wang, and D. K. Schwartz, “Electrostatic Barriers to Nanoparticle Accessibility of a Porous Matrix,” J. Am. Chem. Soc., vol. 142, no. 10, pp. 4696–4704, Mar. 2020.(多孔基质纳米粒子可及性的静电屏障)

10、Deformation of Microgels at Solid–Liquid Interfaces Visualized in Three-Dimension. L. H. Alvarez, S. Eisold, R. A. Gumerov, M. Strauch, A. A. Rudov, P. Lenssen, D. Merhof, I. I. Potemkin, U. Simon, and D. Wöll Nano Letters 2019 19 (12), 8862-8867DOI: 10.1021/acs.nanolett.9b03688(观察在三维可视化的固液界面处微凝胶的变形)

11、Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Wu, Y., Rivenson, Y., Wang, H. et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat Methods (2019) doi:10.1038/s41592-019-0622-5 (用于荧光显微图像三维虚拟重聚焦)

12、Single-Molecule Tracking Microscopy – A Tool for Determining the Diffusive States of Cytosolic Molecules. Rocha, J. M., Gahlmann, A. Single-Molecule Tracking Microscopy – A Tool for Determining the Diffusive States of Cytosolic Molecules. J. Vis. Exp. (151), e59387, doi:10.3791/59387 (2019).(确定扩散状态的胞质分子)

13、HER2 Cancer Protrusion Growth Signaling Regulated by Unhindered, Localized Filopodial Dynamics. W. Lam, et al.; bioRxiv 654988; doi: https://doi.org/10.1101/654988(不受阻的局部丝足动力学调控HER2癌症突出生长信号)

14、Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging. Jin, C., Zhang, J. & Guo, C. (2019). Metasurface integrated with double-helix point spread function and metalens for three-dimensional imaging. Nanophotonics, 8(3), pp. 451-458. (2019) doi:10.1515/nanoph-2018-0216(结合双螺旋点扩散函数和超构透镜的超表面三维成像)

15、Diffusive Escape of a Nanoparticle from a Porous Cavity. Dapeng Wang, Haichao Wu, Lijun Liu, Jizhong Chen, and Daniel K. Schwartz Phys. Rev. Lett. 123, 118002 (2019)(观察纳米粒子从多孔腔的扩散逃逸的现象)

16、Two-photon PSF-engineered image scanning microscopy. Omer Tzang, Dan Feldkhun, Anurag Agrawal, Alexander Jesacher, and Rafael Piestun, “Two-photon PSF-engineered image scanning microscopy,” Opt. Lett. 44, 895-898 (2019)(双光子psf工程图像扫描显微镜)

17、Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. L. Möckl, K. Pedram, A. R. Roy, V. Krishnan, A.-K. Gustavsson, O. Dorigo, C. R. Bertozzi, and W. Moerner, “Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx,” Developmental Cell, May 2019.(哺乳动物糖萼的定量超分辨率显微镜)

18、Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection. S. Li, J. Wu, H. Li, D. Lin, B. Yu, and J. Qu, “Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection,” Optics Express, vol. 26, no. 18, p. 23585, 2018.(具有多点激发和双螺旋点扩散功能检测的快速三维图像扫描显微镜)

19、Deconvolution approach for 3D scanning microscopy with helical phase engineering. Roider, Clemens; Heintzmann, Rainer; Piestun, Rafael; and Jesacher, Alexander, “Deconvolution approach for 3D scanning microscopy with helical phase engineering.” (2016). Electrical, Computer & Energy Engineering Faculty Contributions. 7.(用于探究螺旋相位工程三维扫描显微镜的反褶积)

20、Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. F. M. Jradi and L. D. Lavis, “Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy,” ACS Chemical Biology, 2019.(用于单分子定位显微镜的光敏荧光团的化学)

21、Spatio-temporal correlation super-resolution optical fluctuation imaging. Purohit, Ashvini; Vandenberg, W.; Dertinger, Thomas; Wöll, Dominik; Dedecker, Peter; Enderlein, Jörg Spatio-temporal correlation super-resolution optical fluctuation imaging epl, 125, 2, 20005 (2019) [DOI: 10.1209/0295-5075/125/20005](探究时空相关超分辨率光学波动成像)

22、Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy. Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, Ljiljana Milenkovic, Tim Stearns, and W. E. Moerner, Biophys. J. 116, 319-329 (2019) (DOI: 10.1016/j.bpj.2018.11.3136, published online 7 December 2018).(使用超分辨率荧光显微镜揭示初级纤毛的纳米级形态)

23、Maximizing the field of view and accuracy in 3D Single Molecule Localization Microscopy. Rehman, S. A., Carr, A. R., Lenz, M. O., Lee, S. F., & O’Holleran, K. Optics Express, 26(4), 4631. (2018).(调节在3D单分子定位显微镜中最大化视野和精度)

24、3D single-molecule super-resolution microscopy with a tilted light sheet. Gustavsson, A.-K., Petrov, P. N., Lee, M. Y., Shechtman, Y., & Moerner, W. E.  Communications 2018 9:1, 9(1), 123. (2018).(带有倾斜光片的3D单分子超分辨率显微镜)

25、Three-Dimensional Tracking of Interfacial Hopping Diffusion. Wang, D., Wu, H., & Schwartz, D. K.

Physical Review Letters, 119(26), 268001. (2017)(界面跳跃扩散的三维跟踪)

26、Enhanced information content for three-dimensional localization and tracking using the double-helix point spread function with variable-angle illumination epifluorescence microscopy. Wang et al.

Applied Physics Letters 110, 211107 (2017)(利用双螺旋点扩散函数和可变角度照明的荧光显微技术,增强了三维定位和跟踪的信息内容)

27、Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function. Carr et al. BioPhysical Journal, 112, 1444-1454 (2017)(利用三维超分辨率探究双螺旋点扩散函数的真核细胞)

28、ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Jain, S. et al.

Cell 164, 487–498 (2016).atp酶调节的应激颗粒包含不同的蛋白质组和亚结构)

29、Real-time adaptive drift correction for super-resolution localization microscopy. Grover, G., Mohrman, W. & Piestun, R. Opt. Express 23, 23887–98 (2015).(超分辨率定位显微镜的实时自适应漂移校正)

30、Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Gahlmann, A. & Moerner, W. E Nat. Rev. Microbiol. 12, 9–22 (2014).(通过单分子跟踪和超分辨率成像探索细菌细胞生物学)

31、Three-dimensional super-resolution and localization of dense clusters of single molecules. Barsic, A., Grover, G. & Piestun, R. Sci. Rep. 4, 5388 (2014).(单分子密集簇的三维超分辨率和定位)

32、The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. Backlund, M. P., Lew, M. D., Backer, A. S., Sahl, S. J. & Moerner, W. E.

Chemphyschem 15, 587–99 (2014).(分子偶极取向在单分子荧光显微镜中的作用及对超分辨率成像的意义)

33、Extending single-molecule microscopy using optical Fourier processing. Backer, A. S. & Moerner, W. E.

J. Phys. Chem. B 118, 8313–29 (2014).(使用光学傅里叶处理扩展单分子显微镜)

34、Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. Lee, M. K., Rai, P., Williams, J., Twieg, R. J. & Moerner, W. E. J. Am. Chem. Soc. 136, 14003–6 (2014).(用于三维超分辨率显微镜的活细胞表面小分子标记)

35、Correlations of three-dimensional motion of chromosomal loci in yeast revealed by the double-helix point spread function microscope. Backlund, M. P., Joyner, R., Weis, K. & Moerner, W. E. Mol. Biol. Cell 25, 3619–29 (2014).(用于双螺旋点扩散函数显微镜揭示酵母染色体位点三维运动的相关性)

36、Bacterial scaffold directs pole-specific centromere segregation. Jerod L. Ptacin, Andreas Gahlmann, Grant R. Bowman, Adam M. Perez, Alexander R. S. von Diezmann, Michael R. Eckart, W. E. Moerner, and Lucy Shapiro Proc. Natl. Acad. Sci. U. S. A. 111, E2046–55 (2014).(细菌支架引导着极特异的着丝粒分离)

37、The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation. Backlund, M. P. et al. SPIE–the Int. Soc. Opt. Eng. 8590, 85900 (2013).(双螺旋点扩散函数可精确测量3D单分子定位和取向)

38、Super-resolution fluorescence imaging with single molecules. Sahl, S. J. & Moerner, W. E. Curr. Opin. Struct. Biol. 23, 778–87 (2013).(单分子超分辨率荧光成像)

39、Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. Gahlmann, A. et al.Nano Lett. 13, 987–93 (2013).(细菌蛋白质超微结构的三维定量多色亚衍射成像)

40、Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions . Quirin, S. & Piestun, R. Appl. Opt. 52, A367–76 (2013).(利用宽带非相干照明和设计的点扩散函数进行深度估计和图像恢复)

41、Characterization of a three-dimensional double-helix point-spread function for fluorescence microscopy in the presence of spherical aberration. Ghosh, S. & Preza, C. J. Biomed. Opt. 18, 036010 (2013).(在存在球差的情况下,用于荧光显微镜的三维双螺旋点扩展函数的表征)

42、The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Lee, H.-L. D., Sahl, S. J., Lew, M. D. & Moerner, W. E. Appl. Phys. Lett. 100, 153701–1537013 (2012).(双螺旋显微镜通过以纳米级精度在三个维度上定位单个闪烁分子来超分辨扩展的生物结构)

43、Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters. Grover, G., DeLuca, K., Quirin, S., DeLuca, J. & Piestun, R. Opt. Express 20, 26681–95 (2012).(通过发射器的纳米双螺旋点扩散函数定位进行超分辨率光子高效成像)

44、Limits of 3D dipole localization and orientation estimation for single-molecule imaging: towards Green’s tensor engineering. Lee, H.-L. D., Sahl, S. J., Lew, M. D. & Moerner, W. E. Appl. Phys. Lett. 100, 153701–1537013 (2012).(单分子成像的3D偶极子定位和方向估计的局限性:走向格林的张量工程)

45、Simultaneous, accurate measurement of the 3D position and orientation of single molecules.Backlund, M. P. et al. Proc. Natl. Acad. Sci. U. S. A. 109, 19087–92 (2012).(精确测量单个分子的三维位置和方向)

46、Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions. Conkey, D. B., Trivedi, R. P., Pavani, S. R. P., Smalyukh, I. I. & Piestun, R Opt. Express 19, 3835–42 (2011).(通过集成全息光镊和工程点扩散函数进行三维并行粒子操纵和跟踪)

47、Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging. Grover, G., Quirin, S., Fiedler, C. & Piestun, R. Biomed. Opt. Express 2, 3010–20 (2011).(应用于三维光激活定位成像的光子高效双螺旋PSF显微镜)

48、Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Thompson, M. A., Casolari, J. M., Badieirostami, M., Brown, P. O. & Moerner, W. E.Proc. Natl. Acad. Sci. U. S. A. 108, E1102–10 (2011)(利用双螺旋点扩散功能对酿酒酵母中单个mRNA粒子进行三维跟踪)

49、Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Thompson, M. A., Lew, M. D., Badieirostami, M. & Moerner, W. E. Nano Lett. 10, 211–8 (2010).(利用单个纳米发射器双螺旋点扩散函数在高时空分辨率的三维空间定位和跟踪)

50、Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Badieirostami, M., Lew, M. D., Thompson, M. A. & Moerner, W. E. Appl. Phys. Lett. 97, 161103 (2010).(双螺旋点扩散函数与散光和双平面的三维定位精度)

51、Performance limits on three-dimensional particle localization in photon-limited microscopy. Grover, G., Pavani, S. R. P. & Piestun, R. Opt. Lett. 35, 3306–8 (2010).(光子限制显微镜中三维粒子定位的性能限制)

52、In vivo Three-Dimensional Superresolution Fluorescence Tracking using a Double-Helix Point Spread Function. Lew, M. D., Thompson, M. A., Badieirostami, M. & Moerner, W. E. Proc. SPIE–the Int. Soc. Opt. Eng. 7571, 75710Z (2010).(使用双螺旋点扩散函数的体内三维超分辨率荧光跟踪)

53、Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system. Pavani, S. R. P., Greengard, A. & Piestun, R. Appl. Phys. Lett. 95, 021103 (2009).(使用检测器限制的双螺旋点扩展函数系统实现纳米精度的三维定位)

54、Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Pavani, S. R. P. et al. Proc. Natl. Acad. Sci. U. S. A. 106, 2995–9 (2009).(利用双螺旋点扩散函数进行衍射极限以外的三维单分子荧光成像)

55、Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Pavani, S. R. P. & Piestun, R.Opt. Express 16, 22048 (2008).(利用光子限制的双螺旋响应系统对荧光微粒进行三维跟踪)

56、High-efficiency rotating point spread functions. Pavani, S. R. P. & Piestun, R. Opt. Express 16, 3484 (2008).(高效的旋转点扩展功能)

57、Depth from diffracted rotation. Greengard, A., Schechner, Y. Y. & Piestun, R.Opt. Lett. 31, 181 (2006).(来自衍射旋转的深度)

关于我们
公司简介 人才招聘
产品中心
衍射光学元件 光学平台 Optosigma,西格玛光机 激光测量 激光器 镜片 晶体 光学仪器 光电探测器 光学配件 太赫兹
代理厂商
比利时 芬兰 以色列 德国 美国 立陶宛 加拿大 荷兰 英国
技术咨询
激光产品答疑 激光产品选型 激光产品应用 光学单位换算 激光基础知识 激光行业资讯 激光技术文档
联系我们
联系方式 在线留言
0755 84870203

服务热线

网站地图